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Epistemological Relevance and Statistical Knowledge

We addresss the question of how far you can go in propagating
uncertainty according to statistical knowledge, as opposed to
depending on subjective opinion

I. Background.
For many years, at least since McCarthy and Hayes

(1969), writers have lamented, and attempted to compensate
for, the alleged fact that we often do not have adequate
statistical knowledge for governing the uncertainty of belief, for
making uncertain inferences, and the like. It is hardly ever
spelled out what "adequate statistical knowledge" would be, if we
had it, and how adequate statistical knowledge could be used to
control and regulate epistemic uncertainty.

One response to the lack of adequate statistics has been to
search for non-statistical measures of uncertainty, The minimal
variant has been to propose "subjective probability" as a concept
to which we can turn when we lack statistics.

2. Assumptions.
The assumptions we make here are relatively few. We

suppose that the knowledge base may have general statistical
knowledge in it,

Our second assumption is that statements fall into
equivalence classes with respect to the statistical information that
is epistemically most relevant to them. We can express this as a
formal principle- If "Sm T" is in our knowledge base, then the
same statistical knowledge is potentially relevant to Sand to T

Our third assumption is the general one that our
knowledge base can be expressed in a first order extensional
language. We take an individual, however, to be arbitrarily
complex: for example it might be a trial of a complicated
compound experiment.

Finally, in order for statistics to be of interest, we suppose
that we may know some things about an individual without
knowing everything about it.

3. Interference I.
We will be concerned with the way in which some items

of statistlcal knowledge can interfere with the epistemic relevance



of other items. One principle bearing on this is the subset
principle:

The Subset Principle Suppose that "a is a B" is in our knowledge
base, and that "%(B, C) = p " is in our knowledge base Suppose
that we know that a is a C' if and only if a is a C. that a' is
a B', and that 9(B', C') = p, where p p. This statistical
knowledge is epistemiL-/y ~'jrelevant if we know of a subset of

B', 6", such that we know both a is a B" and o(-'", C')
p.

The subset principle is one that has been frequently
identified in the context of non-monotonic logic.

4. Interference II.
Some situations call for a second principle. Suppose we

have a roomful of urns, and that a designates a ball in the
room Suppose we know that there are 100 balls in the room,
and that 50 are black. But suppose we also know that there are
10 urns, that 9 of them containing four black balls and one
white ball, and that the tenth contains the remainder of the
balls The relative frequency of black balls in the first nine urns
is 8, and the relative frequency of black ball in the tenth urn
is 14/45 = ,311

What statistics are relevant to the statement, "a is
black." If we know of 2 only that it is a ball in the room, it is
only the statistics about the frequency of black balls in the room
that are relevant. If we know also something about how a came
to be the designated ball, the other statistics may also be
relevant. For example, we might know that a is the ball
resulting from first choosing an urn at random, and then
choosing a ball at random from the chosen urn. If that is the
case, the relevant statistics are those governing the proportion of
pairs consisting of an urn, and a ball drawn from that urn, such
that the second member of the pair is black. We call the rule
governing this situation the Bayesian Principle-

The Bayesian Principle Suppose that "<a, h> is a B" is in our
knowledge base, and that %(4 C) = p is in our knowledge
base. Suppose that we know that ia' s a C' if and only if a is
a C that i' is a B5', and that 93(B',C') p p This



statistical knowledge is epistemically irrelevant if we know of a
cross product of B' with B" and a corresponding subset C" and
a " such that

(1) <a ',a "> is known to be in B' x 5,
(2) <a ',a "> is in C" if and only if a is in C,
(3) ×(B, x B", C") = p ,

and for some B* known to be a subset of B' x B',
(4) 9(o*, C) = p.

5. Interference III.
The final principle of relevance we need for dealing with

statistical knowledge is in a sense the dual of our first principle,
the subset principle.

The Supersample Principle: Suppose that we know that an is a

member of P2 and that we are interested in the chance that an

is 7 (e.g, "representative within E"). Suppose that a is known
to be a member of R, that ais a 0' if and onlyif a is , and

that Fo(o', 0) = p p, = %(R, 0') are all knrown. Then our
statistical knowledge about ? is epistemically ,.:relevant if there is
a parallel structure to our original one that is such that we also
know that a is a subset of an .

6. Conclusions:
We arrive at several conclusions

(1) If we accept the equivalence condition -- that
statements connnected in our knowledge base by a biconditional
should have the same probability -- then many more statements
than might at first have been thought can have probabilities
based on statistical background knowledge

(2) This has a profound bearing on the representation of
uncertainty in our bodies of knowledge If we suppose that
"subjective" confidence in the strong sense of "subjective" is
acceptable as a measure of uncertainty only when statistical
information is not available, then there are far fewer situations
in which purely subjective uncertainties are called for than some
people have suggested
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(3) Given the equivalence condition, there may be many
potential reference sets for a given equivalence class of
statements. We therefore need a way of adjudicating our choice
among these reference sets.

(4) There are three ways in which conflict between two
potential reference classes can be resolved to the benefit of one of
them. Only one of these ways seems to have worked its way
into the literature on non-monotonic logic. All three should be
taken account of.

(5) These three resolutions reflect the three principles:
the Subset Principle, the Bayesian Principle, and the Superset
Principle (In fact the subset principle is reducible to the
Bayesian principle (see Kyburg 1983).)

(6) The results of this analysis can be used to implement
probabilistic non-monotonic acceptance as well as to determine
rationally allowable distributions of uncertaint-:'

Henry E. Kyburg, Jr. University of -chester
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